
i

*
I

Identifying executable plans

Source of Acquisition
NASA Ames Research Center

Tania Bedrax-Weiss’ Jeremy D. Frank
Ari K. J6nssont Conor McGann*
NASA AIMS Research Center, MS 269-2

Moffett Field, CA 94035-1000,
{tania, f r a n k , j onsson, cmcgann}@email. arc. nasa. gov

Abst rac t

Generating plans for execution imposes a different set
of requirements on the planning process than those im-
posed by planning alone. In highly unpredictable ex-
ecution environments, a fully-grounded plan may be-
come inconsistent frequently when the world fails to
behave as expected. Intelligent execution permits mak-
ing decisions when the most up-to-date information
is available, ensuring fewer failures. Planning should
acknowledge the capabilities of the execution system,
both to ensure robust execution in the face of uncer-
tainty, which also relieves the planner of the burden
of making premature commitments. We present Plan
Identification Functions (PIFs), which formalize what
it means for a plan to be executable, m d are used in
conjunction with a complete model of system behavior
to halt the planning process when an executable plan is
found. We describe the implementation of plan identifi-
cation functions for a temporal, constraint-based plan-
ner. This particular implementation allows the descrip-
tion of many different plan identification functions.

Introduction
Planning has been an important problem in Artifcial
Intelligence, but plan execution is a problem that AI
has often overlooked. In fairly simplistic and highly-
predictable environments, the planning system can
hand a fully-grounded plan to the execution system and
the execution system will be able to execute it flaw-
lessly. However, in unpredictable environments, a fully
grounded plan will often result in execution failures.
Additionally, it is inefficient for the planning process
to commit to decisions in advance that are likely to be
invalidated during execution. One way to avoid these
problems is to have an intelligent execution system that
is able to “fill in the blanks” given a plan that is not
fully grounded. Intelligent execution may range in com-
plexity from fairly simple computations to a process re-
sembling full-blown planning. Depending on the char-
acreriStics crf the ~ x e c ~ ~ t i o f i envir~nm-enf, the best plan
to hand to the execution system will contain more or
less commitment and information.

AI sdutions fer placning uld p!m execution often use
declarative models to describe the domain of interest.
The planning system typically uses an abstract, long-
term model and the execution system typically uses a
concrete, short-term model. In mast systems that deal
with planning and execution, the language used in the
declarative model for planning is different than the lan-
guage used in the execution model. This approach en-
forces a rigid separation between the planning model
and the execution model. The execution system and the
planning system have to agree on the semantics of the
plan, and having two separate models requires the sys-
tem designer to replicate the information contained in
the planning model in the execution model. Since much
of the knowledge may be shared between the planning
and execution systems, this produces a model synchro-
nization problem. Furthermore, if the execution system
wants to relay information back to the planner, in this
scenario, the information has to be translated. Not us-
ing the same language may be detrimental because syn-
chronization and translation may introduce errors and
increase model engineering effort.

If both the execution and planning systems have a
common language, then information from and to the
executive can flow seamlessly. Furthermore, changes
in the planning model are then automatically propa-
gated to the execution model. In addition, it is easier
to modify the boundary between planning and execu-
tion systems in such systems. Even if a single model for
planning and execution is not available, there are still
good reasons for making it easy to vary the boundary
between planning and execution systems using a single
model of system behavior. Many candidate execution
systems may be available; identifying the right one re-
quires a planning model that can be used with any one
of the possible execution systems.

An executable plan is a plan that the execution sys-
tem can make any remaining decisions and then trans-
late the result into commands that can be sent to the
hardware with which the syszern is irritraciirig. Based
on this notion, the “executability” of a plan depends di-
rectly on the capabilities of the execution system. For
a general model of system behavior, we would like to
specify which parts of that model describe the commit-

~

‘QSS Group, Inc.
Research Institute for Advanced Computer Science 2

4

b

ments that should be made by the execution system.
In this paper we provide the formalism and implemen-
tation of Plan Identification Functions PIFs . These
functions exactly characterize the executable plans in
a model that is shared between the planner and the
executive. Thus, they serve to separate the duties of
planning by partitioning the planning problem into a
set of commitments that are made in advance, and a
set that are interleaved with plan execution.

We will proceed by presenting a simple example to
clarify some of these notions.

A Simple Example
To examine the issues involved in generating plans for
execution, let us consider a simple spacecraft that can
slew (i.e, turn to different orientations), take pictures,
and download pictures to Earth.

A plan request for this spacecraft might consist of a
set of picture requests, and then a request for down-
loading some or all of these pictures to Earth. The
planning process would generate an “executable plan”
that achieved those goals. The execution agent would
then execute the plan by thrusting to rotate the space-
craft, activating camera components, and transmitting
data.

A traditional approach to this problem would be
based on separating the planning from execution at
some specific level of abstraction. For example, the
planning process might involve generating slew ac-
tions, orientation maintenance actions, picture-taking
actions, and download actions. The complete plan, at
that level of abstraction, would then be executed by
breaking each high-level action down into specific com-
mands that together perform the action. The slew ac-
tions, for example, would be broken down into engine
warmup, thruster firing, wait, opposite thruster firing,
and then stabilization. The sequence of execution com-
mands would have to fit within the time allocated to
the slew action.

If the execution system is sophisticated, it could de-
termine how fast to slew, since the slewing rate is con-
trolled by the time spent firing the engines at the start
and end of the slew. Slower slew rates typically save
fuel. The execution system might also be able to deter-
mine when to start activities that have some temporal
flexibility. Rather than waiting until the next action
start time, which is bound to be later rather than ear-
lier, to provide a safety margin, the execution system
could determine that all earlier actions have been com-
pleted, that the action in question can start as early as
a given time, and then start that action at that time.

In the Remote Agent Experiment (JMMfOO;
MNP+98), the planning process built a partial plan
where certain temporal decisions were left to the ex-
ecution engine. These temporal decisions were limited
to those that together formed a simple dispatchable net-
work (MMT98). However, as noted in (JMM+OO), the
notion of retaining flexibility in the executed plan can
be generalized to an arbitrary set of decisions.

Models of System Behavior
The system model defines the set of possible states
and actions, along with rules that specify allowed
and forbidden relations between actions and states.
The states and actions are defined by predicates like
pointingAt (obj ect) and slewFromTo (obj 1, obj2) .
We define a partial p lan as a collection of temporal pred-
icate statements, based on a given model. We assume
that the parameter set for each predicate doesn’t have
to be fully grounded. This notion naturally supports
more flexible planning paradigms such as those used in
constraint-based planning systems.

The rules in the system model specify, directly or
indirectly, the conditions for a state or action being in
the plan:
0 which instantiations of statelaction predicates are

valid
for each actionlstate, what other states or actions
must exist in the plan to support i t

0 the temporal and parametric relations between states
and actions
For example, a model for our simple spacecraft

would state that the predicates include pointingAt ,
slewingFromTo, takepicture, download. Legal in-
stantiations of slewingFromTo are limited to those
where the origin and destinations are not the same, and
takepicture instantiations are limited to objects and
times where an overly bright object, like the sun, is not
in the frame. There are a number of relations between
predicates in this model; for example, a takepicture
must be done within a period where the spacecraft is
pointing at the object in question. This means that
there must be a pointingAt predicate in the plan, and
that furthermore, the appropriate pointingAt must
have the same object value as the takepicture, must
start no later than the takepicture and must end no
earlier than the t akep i cture.

It should be noted that this core approach covers ba-
sic STRIPS-like descriptions, where states are preserved
by the frame axioms and action definitions define state
changes. It also covers constraint-based approaches,
with and without an explicit representation of time or
resources. Furthermore, in STRIPS, the initial state
and goal statements are simply part of a partial plan
that must be extended to include the actions necessary
to go from the initial state to a goal state. Since both
planning and execution use the same model, the plan
is semantically meaningful to both the planner and the
executive l .

The rest of the paper is organized as follows. We
first provide a formal definition of PIFs and character-
ize some useful properties of PIFs . We then describe
an implementation of PIFs in a planning framework
called EUROPA. We identify some important imple-
mentation details that arise when implementing PIFs

‘This idea is borrowed from (MDF+02), which we de-
scribe later in the paper.

in this framework. We then conclude and discuss sev-
era1 open issues.

In constraint-based planning, partial and complete
plans are represented as networks of intervals. The con-
nections between intervais in such a necwork are defined
by the configuration rules. Plan Identification

We now turn our attention to formally defining the con-
cepts related to general plan identification. We begin
with a general and expressive approach to planning,
which supports arbitrary variables, quantitative tem-
poral relations, arbitrary constraints, and expressive
activity-state rules.

Constraint-based planning
In order to address realistic problems, a planning
paradigm must support actions and states with tem-
poral extent, complex reiations anivng action and state
arguments, as well as complex model rules about condi-
tions and effects of actions and states. In recent years,
different approaches have been proposed for moving
away from the classic STRIPS paradigm, and towards
more realistic approaches that incorporate explicit rep-
resentations of time and resources. These approaches
fall into a broad category called Constraint-Based Plan-
ning (CBP) (SFJOO).

The basic idea behind CBP is to use variables to
represent all aspects of states and actions, and to use
constraints to enforce relations between those variables.
The basic element in constraint-based planning is an in-
terval. An interval is simply a predicate holding over a
period of time. The start and end of the interval and
the parameters of the predicate are described by vari-
ables. M a e formally, an interval is a tuple, (p, x, s, e),
where B is a predicate name, X is a vector of variables
defining the arguments to the predicate, and s and e
are temporal variables, defining the start and end of
the interval.

A planning domain is defined by the set of kterval
types, and a set of configuration rules. A conjigura-
tion rule is a generalization of the notion of precon-
ditions and effects. Instead of specifying only state
values before and after an action, a configuration rule
can specify arbitrary temporal relations specifying how
actions and states must relate in a valid plan. This
means that a configuration rule can specify that when-
ever an attribute is assigned an interval of a certain
kind, other intervals must exist in the plan, such that
specific constraints are satisfed. In addition to tem-
poral constraints, configuration rules can specify other
constraints amongst the parameters of the actions and
states.

In our spacecraft example,
consider a takePicture(x) interval, I , for the cam-
era attribute. A configuration rule might specify that
there must be a pointingAt (y) interval, J , such that
x = y , t h e siarr. of j is at ieast iG seconds before the
start of I , and the end of J is no earlier than the end
of I . Notice that the latter constraint in the rule is not
strictly a precondition or an effect, but only involves
temporal constraints.

Partial plans and completions
In CBP, a partial plan consists of a set of intervals and
a set of constraints among the variables representing
those intervals.

A partial plan P is valid, if for every applicable con-
figuration rule, all the intervals and constraints required
by those rules are in P. A partial plan P is instanti-
ated, if each variable has been given a single value. A
partial plan P is consistent if none of the constraints in
the plan are violated and inconsistent otherwise.

A planning problem is simpiy a partial pian. This
notion generalizes the very restrictive STRIPS notion
of only specifying an initial state and a set of goals. The
notion of a planning problem as a partial plan allows
specific actions as goals, supports the specification of
maintenance goals, makes it easy to define exogonous
events, and much more. Planners can modify plans in
two ways. A restriction is defined as the binding of a
variable or the addition of a constraint. A relaxation is
defined as the unbinding of a variable or the removal of
a constraint. An extension of a given partial plan, P, is
a plan Q such that each interval in Q can be mapped to
a compatible interval in P, and each constraint in P is
in Q. Thus, restricting a plan P results in an extension
Q, and relaxing a plan Q’ results in a plan P’ such that
Q‘ is an extension of P’.

A partial plan, Q is complete if every interval is in-
stantiated and the plan is valid. Q is a completion of
every relaxation of &. We say that a problem instance
P has a solution if it has a consistent completion Q.

The strictest notion of solving a planning problem P
is to find a consistent compltior? of P . However, a more
general notion is much more useful when it comes to
planning for execution agents that are not completely
trivial in complexity. In essence, solving a planning
problem P for an intelligent execution agent involves
finding a consistent extension Q that can be executed by
the given execution agent. We now turn our attention
to a general formulation of such a notion.

Plan identification functions
Consider a partial plan encountered during the course
of planning. We would like a declarative description
of the set of plans that can be accepted for execution
by the execution system. This is the notion of plan
identification funct ions (PIFs). The basic idea is to
have a mapping that indicates whether or not a partial
plan is suitable for a given execution engine or not.

Identifying inconsistency is a natural complement to
pian identification. Consider a partiai pian that has
no valid completions. In a sense, the partial plan is
a dead-end. However, it is computationally expensive
to determine whether any given partial plan is incon-
sistent or not. Consequently, it is useful to think of a

c

“consistency identification function” that maps partial
plans to T, F, or 7, where the T value indicates that the
plan is consistent, F indicates it is inconsistent, and ?
indicates that the consistency of the plan is not known.

The original notion of a PIF appeared in (JMMfOO).
This definition combined the notion of consistency with
executability, and used three return values, T, F and ? A
return value of F indicated that the plan violated some
constraint, i.e. no extension of the plan was consistent,
which forced the planner to backtrack. A return value
of T indicated that all intervals were valid and consis-
tent according to a set of applicable configuration rules,
and thus planning was complete. A return value of ?
indicated that the plan was consistent but not valid,
and thus the planner had to continue searching for an
extension.

In this paper, we define a more relaxed notion of a
plan identification function. A PIF maps partial plans
to the values Y and N. A return value of Y indicates
a plan is executable and a return value of N indicates
a plan is not executable. Keeping the definitions as
general as possible, we do not pose any more restrictions
on the evaluations of partial plans. For example, it is
possible that plan execution systems may be based on
technology that works in the space of inconsistent plans,
and thus we want to be able to specify PIFs that are
able to pass inconsistent plans to the execution system.
We therefore look at specific characteristics of PIFs that
are desirable in certain cases.

Characteristics of plan identification
functions
Regardless of the impact of execution, we assume that a
partial plan P must be consistent when the plan execu-
tion commences. We also assume that the instructions
the execution system issues to the underlying hardware
are based on fully instantiated plans. If either of these
conditions is not satisfied, then the plan execution sys-
tem must be able to come up with a consistent complete
plan.

The simplest question one can ask of a plan handed
to the execution system is whether it has a consistent
completion. In most (but not all) cases, such correct-
ness would be a crucial characteristic of an executable
plan.

A PIF , i, enforces correctness if, for any partial plan
P , such that f(P) = y, P has at least one consistent
completion.

The next question is how much work needs to be done
by an execution engine to find a consistent completion
in different circumstances. This is a particularly inter-
esting question if uncertainty during execution is taken
into account.

A PIF , i, enforces solvability if, for any partial plan
P , such that i (P) = y, all extensions of P are complete
and consistent.

It is often difficult to find plans satisfying the above
property without finding a complete plan to begin with.
As such, it is useful to identify PIFs that return partial

Partial Plan

Figure 1: The Plan Identification Function as a Flaw
Filter

plans that require only a bounded amount of time to
solve. In cases where a PIF returns inconsistent plans
to the executive, it is also useful to characterize the
amount of time that search in the infeasible space is
performed. Because of the different search procedures
required we provide two definitions below.

We first want to formally characterize an executive
that can efficiently ensure a completion of a consistent
plan can be found, if one exists. A PIF , i, enforces
O (f (n)) solvability if, for any consistent partial plan P
satisfying i (P) = y, then in time O(f(lP1)) either a
consistent completion of P can be found or it can be
shown that no consistent completion of P exists.

On the other hand, if the executive is handed an in-
consistent plan, the problem is somewhat different. In
this case, no completion is possible. Instead, we must
find a completion of the original planning problem that
the planner attempted to solve. Suppose the original
planning problem is R. A PIF , i, enforces O (f (n))
transformability if, for any partial plan P satisfying
i (P) = y, then in time O(f(lP1)) a series of transfor-
mations of P resulting in a &, a consistent completion
R, can be found, or it can be shown that no such com-
pletion exists.

Examples

In the Remote Agent Planner, the PIF accepted only
consistent and valid plans where all parameter variables
had been assigned specific values, but tolerated unas-
signed temporal variables forming a dispatchable simple
termporal network (JMM+OO). The restriction that the
resulting temporal network be dispatchable made the
PIF correct and provided a linear bound on how much
time it would take the execution engine to complete a
given plan. This is an O(n) solvable PIF .

Recent techniques have extended the ability of execu-
tion systems to handle uncertainty in temporal quan-
tities. In particular, (MMVO1) presents an algorithm
that can detect when a temporal network with uncer-
tainty can be executed without failure, and (MMO1)
presents an algorithm for executing such networks in
polynomial time. Thus, we can write PIFs for such
problems that are O(f(lPI)) , where f is a polynomial.

J

From Plan Identification to Flaws
We ha7e forma!!y defbed the PIF as a function from
a plan and a model to an answer of either Y or N. In
practical applications, however, a planner using the PIF
would like further indication of what is wrong with the
plan when the answer is N. A more useful notion of a
PIF , depicted in Figure 1, is one that given a plan and
a model, returns a set of possible plan modifications if
the answer is N and the empty set if the answer is Y.
We refer to the set of plan modifications as flaws.

A f law is a modification to a partial plan, either a
restriction or a relaxation. Let 3 (P) be the set of flaws
derived from plar, P. We can now redefine a PIF as a
mapping: F(P) + 27(p) . That is, the PIF identifies a
(possibly proper) subset of the flaws that define the set
of plan modifications that a planner can make.

The set of flaws can be defined in different ways de-
pending on how the planner conducts search. For ex-
ample, suppose the partial plan has valid extensions.
Then the set, of P,m~s might consist only of the set of
restrictions that a planner can impose in its search for a
completion that satisfies the PIF . However, a planner
such as ASPEN (FRCY97) can benefit from flaws that
are restrictions or relaxations, since it c m search the
space of infeasible solutions.

Notice that it could require exponential space to de-
fine very complex plan identification functions if it were
necessary to enumerate all the possible sets of flaws and
the mapping that applied for each of those flaw sets.
Practicality dictates that we have a concise manner of
both expressing and evaluating PIFs .

An Implementation of Plan
Identification

We have implemented the notion of a PIF as a flaw
filter in the context of the Construant-based Attribute
and Interval Planning framework (FJ03) (CAIP), in the
system called EUROPA (Extensible Universal Remote
Operations Planning Architecture). In this section we
first give an overview of EUROPA, then describe the
PIF implementation. Further details on EUROPA im-
plementation can be found in (FJ03); in this section, we
focus on those aspects that are most relevant to PIFs .

EUROPA Overview
CAIP is an extension of CBP. Like the basic constraint-
based planning paradigm, intervals provide the basic
representation of actions with durations and states with
temporal extent. The key addition is in the notion of an
attribute. An attribute represents some system, subsys-
tem or other .zspect of the domain for which planning is
being done. An attribute can only take on one value at
a given time, so attributes enforce a mmuai eXCiUSiUn
relation among intervals that are assigned to the same
attribute. In addition, each interval must be placed on
an attribute. This requirement enforces mutual exclu-
sion among all intervals.

Partial Plan

EUROPA

I Plan Database

3
partial Plan’

Figure 2: Planning For Execution With EUROPA

In our spacecraft example, the state of the camera
might be one attribute. When a picture is being taken,
the camera takes on the state t a k e p i c t u r e , otherwise,
the state is cameraIdle or slewingFromTo. Similarly,
the attitude of the spaccraft could be another attribute,
whose values are instantations of slewingFromTo and
p o i n t ingAt.

A partial plan in EUROPA consists of a mapping of
attributes to sequences of intervals, a set of free inter-
vals, and a set of constraints on variables in the given
intervals. Free intervals are intervals that have not been
sequenced on attributes yet. We assume for simplicity
that the set of flaws of a partial plan is comprised of
free intervals and unbound variables 2 . A plan identifi-
cation function, then, takes the set of free intervals and
unbound variables in the plan database and returns a
subset of these in response to a query from the planner.

Figure 2 shows the overall architecture of EUROPA
in the context of planning for execution. The system is
composed of the following modules: a planner, a plan
database, and a plan identification module. Planning
begins with a partial plan and a domain model. The
plan database is initialized with the partial plan and
the model. During planning, a planner can query the
plan database through the plan identification module
for flaws in the initial partial plan. Flaws are defined in
terms of the model configuration rules and the PIF acts
as a filter. If no flaws remain and the plan is consistent,
the planner concludes that a plan has been found. If
flaws remain, however, the planner makes commitments
to resolve the remaining flaws by updating the plan
database. The planner thus alternates between asking
the plan identification module for flaws and updating
the plan database until a plm that satisfies the model
and the PIF is found.

2Note that this set of flaws is only useful for planners that
search in feasible space, but EUROPA can support other
flaws as well.

c

In the EUROPA plan database, predicate arguments,
timepoints, and attributes of an interval are represented
as variables. Configuration rules impose constraints on
the values these variables can take. The plan database
manages the variables and constraints and makes use
of a temporal network to maintain consistency between
temporal variables and the temporal relationships im-
posed by the configuration rules. The plan database
also uses a constraint network to maintain consistency
among all other variables and constraints.

Consider the following simpIe model of the spacecraft
domain. The first half of the model specifies the inter-
vals that can appear on each attribute, and the second
half specifies the configuration rules. We use the simple
temporal relations of Allen’s Algebra to specify con-
straints between the timepoints of required intervals.
We also assume that parameters of different intervals
with the same variable name require the parameters to
take on the same value.

Atti tude : {pointAt (ob j ec t) , turnTo (obj ec t)}
Camera: {off (1, ready() , takePic(object)}
Take-Picture(B) -+ met-by ready()
Take-Picture (B) -+ contained-by pointAt (B)
r e a d y 0 -+ met-by o f f (1
pointAt (B) -+ met-by turnTo(B)

Figure 3: A simple model of the spacecraft domain

EUROPA enforces configuration rules by means of
the following plan invariant whenever a plan modifica-
tion results in a change to the set of plan completions,
the intervals in the plan are updated. New intervals
are added as free intervals. In the case of relaxations,
some intervals that were part of the plan may no longer
be justified, and if so, the intervals and all associated
variables and constraints are removed. In the case of re-
strictions, new intervals, variables and constraints may
be needed in the plan, and if so, they are added.

Figure 4 shows a plan fragment based on the simple
model. The Camera attribute is initially turned off, then
it is ready, and then it is taking a picture. While the
Camera is taking a picture of the object, the At t i tude
is pointing at the object. Notice that there are two free
intervals, one with predicate turnTo and one with pred-
icate pointAt. The free interval turnTo was generated
by the plan invariant, while the free interval pointAt
was part of the initial problem instance.

Consider the interval pointAt(A) which is in-
serted on the Att i tude attribute. In this case, the
rule pointAt(B) + met-by turnTo(B) means that
if a pointAt(B) interval exists in a plan, then a
turnTo (B) must preceed the pointAt (B) . The pres-
ence of the pointAt(& interval forces the addition
of the free turnTo(C) interval due to the plan invari-
ant. Similarly, if the pointAt(A) interval is removed
from the Att i tude attribute, then the free interval
TurnTo (C) is no longer justified, and is removed from
the plan.

LEGEND
Temporal
\‘aria& - Precedence Equality

+ i + Interval

Constraint Constraint

+-+
Figure 4: A simple partial plan for the model described
in Figure 3

In EUROPA, the parameter equivalence is handled
by creating a new variable for the required turnTo inter-
val and posting an equivalence constraint between the
parameters. In this example, the parameter C of the
turnTo predicates has been equated with the param-
eter A of the sequenced poin tAt0 interval. Finally,
we note that C has not been bound to any particular
value, while parameter D of the other turnTo has been
bound to value d.

Plan Identification in EUROPA
In EUROPA, the PlanId function is implemented as
a filtering operation on the set of flaws in the plan
database. To support this, the system must provide
capabilities to:
1. obtain access to the set of flaws in the plan database;
2. define a filter expressing criteria for including or ex-

3. obtain a set of filtered flaws by applying such a filter.
These capabilities are accomplished by providing:

1. a flaw storage mechanism, referred to as the
Flawcache, which keeps the set of flaws in the plan
database synchronized with changes made through
explicit commitments by the planner or derived
through inference.

2. a highly customizable filtering structure which allows
pre-defined conditions and/or new custom conditions
to be seamlessly integrated in a single filter.

3. a flaw querying facility which handles all access to
the Flawcache and applies filtering criteria defined
by the planner.
The remainder of this section describes in more detail

the framework developed to achieve this in an efficient
and customizable manner.

cluding a flaw;

i

Planner and event-based synchronization leads to efficient im-
plementation.

while (done==false)
if (isconsistent 0)

filteredFlaws=getFlawsFromQuery ()
if (filteredFlaws .isEmpty () ==false)

nextFlaw = choose(filteredF1aws)
resolve (next Flaw)

else done=true
else ... // rest of the algorithm omitted

end while

Figure 5: Class Diagram of the PlanId Framework
Fignre 5: Planning with Flaw Queries.

Framework Class Diagram
Figure 5 presents the internal details of the PlanId mod-
ule referenced in Figure 2. The PlanDatabase gener-
ates events indicating changes to intervals and variables
when the plan invariant is invoked. These events are re-
ceived by the Flawcache and used to maintain the set
of all flaws in the system, i.e. all free intervals and un-
bound variables. Events indicating a restriction may
cause a flaw to be removed from the Flawcache e.g. in-
serting a free interval or assigning a value to an unbound
variable. Events indicating a relaxation may cause a
flaw to be inserted into the Flawcache e.g. relaxing t o
domain of a variable or freeing an inserted interval.

A planner creates a Flawquery at the beginning of
the planning process. It is by means of a Flawquery
that a planner obtains the relevant subset of flaws as
indicated by a filter. Planner-specified filters are de-
fined in a F i l t e r c r i t e r i a o b j e c t , which is just a collec-
tion of Conditions. Each Flawquery has exactly one
F i l t e r c r i t e r i a instance, provided to it during con-
struction. Condition objects provide the customiza-
tion necessary for planners to filter out flaws they wish
to ignore. For a Flaw in the FlawCache to be returned
by a Flawquery, all Conditions must be satisfied.

In order to gain access to the set of flaws and the set of
flaw changes, each Flawquery establishes a Connect ion
with the Flawcache. A Connection provides access
to all flaws in the Flawcache. A Connection also
provides a location to store information on changes
in the Flawcache since the the Flawquery was last
queried. Notifications of changes in the contents of the
Flawcache, i.e. flaws inserted or removed, are pushed
to each connection from the Flawcache as the latter is
synchronized with the PlanDatabase.

This architecture provides a number of useful fea-
tures. First, the FlawCache can support many con-
nections at once, enabling it to provide flaws to many

a x provided, enabling a very large number of different
PIFs to be expressible. Third, it is very straightforward
to develop additional conditions making the approach
very extendible. Finally, emphasis on lazy evaluation

~!ZLIXI~FS. S e c ~ c d , a wide ~ i + t y of siriiple iofiditi~nj

Step 1:
FlawCache={A, B, C,pointAt (D = d) , turnTo(C)}
FilteredFlaws:{A, B, c ,poin tAt(D = d) }
nextFlaw: pointAt (D = d)

FlawCache={A, B , C, E,turnTo(C) , turnTo(E)}
FilteredFlaws:{A, B, C, E }
nextFlaw: E

FlawCache={A, B, C}turnTo (E = d) , turnTo (C)]
FilteredFlaws:{A, B, C}
nextFlaw: A

Step 2:

Step 3:

Figure 7: Evolution of the flaws for the partial plan in
Figure 4.

To see how the flaw filtering works, consider the sam-
ple partial plan shown in Figure 4. There are five
flaws: the variables A, B and C, the turnTo(C) inter-
val and the pointAt(D = d) interval; the FlawCache
has these five flaws. Now suppose that the PIF fil-
ters out intervals with predicate turnTo. Then the set
of filtered flaws consists of the three variables and the
pointAt (D = d) interval.

The basic loop of a planner is similar to the fragment
presented in Figure 6. At each step, the planner re-
quests the filtered flaws. Once the flaws are retrieved,
the planner uses some criteria to select a flaw, then uses
another criteria to resolve the flaws. Application of the
plan invariant and propagation of variable changes in
the constraint network result in updates to the Flaw-
Cache. Subsequent queries to the FlawQuery will re-
turn a new set of flaws that accounts for these updates
and the filtering of these flaws by the PIF .

steps of planning given the partial plan and PIF that we
have described. This process is shown in Figure 7. Let
us assume that choose selects flaws according to some
arbitrary order. Also suppose that resolve performs an

T I - ^^^ l-:- -I^-^-- . Lu act: tiiia pucIeaa iii actioii, kt i i ~ CO&&i a few

insertion for free intervals or a variable assignment for
unbound variables. After inserting pointAt(D = d)
we see that the plan invariaiit ensures the creation of
a turnTo (E) interval. The FlawQuery, however, indi-
cates that the set of filtered flaws at step 2 only includes
the variables A, B, C, E. At the next step, choose() re-
turns flaw E ; there is only one possible value, d, and
thus the plan invariant doesn’t lead to the creation of
any new variables or intervals.

Such a simple filter could be achieved with- a sin-
gle condition which would check the predicate name of
each interval flaw and exclude it if it matched the name
turnTo.

EUROPA Plan Identification Function
Capabilities
EUROPA’s PIF framework supports the following con-
ditions, among others:
0 Interval predicate filtering - filters all intervals of a

particular predicate.
0 Interval variable filtering - filters selected variable of

all intervals with a particular predicate.
Attribute filtering - filters all intervals and all vari-
ables of all intervals from a particular attribute.

0 Temporal filtering - filters intervals according to a
variety of temporal specifications. One example is a
filter for intervals guaranteed not to happen within a
temporal extent (a horizon filter).
In practice, different applications will impose differ-

ent requirements on plan executives. In an execution
environment that is uncertain, there are advantages to
not fully specifying a plan. To be robust against un-
certainty in the execution environment a plan must be
flexible. For instance, if decisions cannot be determined
in advance because the way in which they are made de-
pends on factors that are only determined at execution
time, it may be advantageous to leave these decisions
up to the execution system. The PIF framework al-
lows considerable latitude in defining the capabilities
of execution systems, and thus enables the planning
technology to be more widely useful. However, it also
provides considerable flexibility within a single applica-
tion. Engineers can design different PIFs and analyze
the resulting performance of the integrated planning
and execution system, and choose the PIF that works
best.

An execution system will typically only care about
the plan developing inside the current execution win-
dow. If this execution system is implemented as a plan-
ner, a PIF could be used to focus the planning effort
on that execution window only using the horizon fil-
ter. Such a PIF would contain a horizon condition that
would specify, for each free interval and each unbound
variable, whether it falls within the horizon or not. A
free interval falls within the horizon if its start time and
end time variable domains include the horizon time-
points. An unbound variable will fall inside the horizon

if it belongs to one of the intervals that falls within the
horizon.

The time at which an event actually occurs is usu-
ally different from the planned time. This difference
can sometimes prove costly since it may cause some as-
sumptions that were made in the planning stage to fail.
In EUROPA, the temporal network is implemented as
a Simple Temporal Network (DMPS 1). Simple Tempo-
ral Networks guarantee that if the network is consistent,
an appropriate set of bindings of the temporal variables
can be found in polynomial time. Thus, if the tempo-
ral network is consistent, no further commitments on
time have to be made during planing. This is assuming
that the executive is intelligent enough to be able to
find this appropriate set. A PIF provides the means to
define this flexibility if it implements a condition that
filters temporal variable flaws. If no temporal variable
flaws are passed on to the planner, these decisions will
remain unbound (though constrained by the temporal
network) until execution time.

Overcommitment at planning time may prove costly
in other ways. In cases where a plan consists of high-
level and low-level tasks, the low-level task expansion
of the high-level tasks may depend highly on when the
tasks get executed. In such cases, it is convenient to
let the execution system map high-level tasks into low-
level tasks during execution. This frees the planner
from generating low-level tasks, and allows the execu-
tive to choose the low-level tasks that best fit the actual
execution. In EUROPA, high-level and low-level tasks
can be placed on separate attributes. A PIF provides
the means to define this flexibility by implementing a
condition that filters flaws depending on whether they
are allowed to be placed on high-level attributes or not.
A free interval can be placed on a high-level attribute
if i t belongs to the set of allowable states of that at-
tribute. An unbound variable belongs to the high-level
attribute if it belongs to an interval that can be placed
on the attribute.

There are instances of planning for execution when
some planning decisions inside one execution cycle may
determine what will happen in a future execution cycle.
These commitments are sometimes unnecessary, espe-
cially in uncontrolled execution environments. These
planning decisions may manifest themselves as particu-
lar predicate logic statements or as arguments to pred-
icate logic statements. A PIF povides the means to
delay commitment on these predicates or variables by
implementing a condition that filters flaws on whether
they are based on these predicates or variables.

Complexity Analysis
In the simplest implementation, one could omit the
Flawcache and Connect ion infrastructure. Resolving a
query would be accomplished by iterating over all inter-
vals and variables in the plan database and for each, ap-
plying the filter to test for inclusion or exclusion. This
would result in a worst-case time-complexity given by
(N , + Ni) * N, * C, where N,, is the number of vari-

.
ables, Ni is the number of intervals, N, is the number
of conditions in the filter, and C, is the average cost of
evaluating a condition.

Since the points of greatest cost are in the evalua-
tion of conditions, we seek to reduce the execution of
condition tests. This is accomplished in a numnber of
ways:
1. The last set of filtered flaws are cached in each

2.

3.

4.

5.

Flawquery.

The current set of flaws in the plan database are
cached in the Flawcache.
Each cache is maintained through notifications of
changes.
Conditions may be ordered to fail fast, based on the
characteristcis of each problem.
The FlawQuery is updated only when the planner
consults it for the latest set of flaws. Thus, the
queries are only run on the set of Aaws that were
added since the last query.
The resulting worst-case cost of a query is approx-

imated by: N+ * N, * C, where N+ is the number of
flaws inserted into the flaw cache since the last query.4
The approximation omits the cost of caching events
during synchronization of the Flawcache and the Plan-
Database. This is reasonable since the costs of caching
are much less than the cost of evaluating the conditions
over all insertions. Notice that we do not need to worry
about flaws that are removed from the cache, since they
aren’t returned to the planner in any case.

Related Work
A wide variety of agent architectures have been de-
signed to support both planning and execution. We
will not describe all aspects of these systems here. We
will describe how these systems characterize the bound-
ary between planning and execution, and compare it to
the approach we have described here.

Many integrated planning and plan execution frame-
works define a fixed boundary between their compo-
nents. These systems also use different modeling lan-
guages, in some cases with different semantics, and thus
have potential problems with model synchronization.
Finally, these systems do not have a crisp declarative
characterization of the boundary between the compo-
nents. Examples of integrated planning and plan exe-
cution systems in this category are 0-Plan (TDK94),
3T (BFG+97), and Propice-Plan (DI99).

Cypress (WMLW95) is a planning and plan execu-
tion framework designed for a variety of applications,
including military operations. Cypress is a loosely cou-
pled integration of the SIPE planner, the PRS reactive
execiitinn ~ y ~ t e m , aqd Gister-CL sys t e~- f ~ r reacning

In practice only Some of the conditions will be executed
since we discard the flaw after the first condition fails.

N+ << (N, + Nu) since there are relatively few flaw
insertions resulting from each planner commitment.

3

4

under uncertainty. Cypress enables human intervention
during planning and plan execution. Cypress uses the
ACT representation to modei both pianning and execu-
tion. The boundary between SIPE and PRS is flexible,
as PRS can invoke SIPE to handle run-time plan fail-
ures. However, there is no facility in Cypress to describe
the boundary between the planner and plan execution
in a declarative way.

The Remote Agent (RA) (MNP+98; JMM+OO) is an
agent architecture for spacecraft control that was used
in a 2-day experiment of an autonomous probe. The RA
consisted of a planner, a plan execution system, and a
mode identification and reconfiguration system. The
RA planner built plans that were temporally flexible so
that the plan execution system could decide on-the-fly
which tasks to start and end (MMT98). This repre-
sented a significant advance at the time; however, other
applications using the RA could not use any other di-
vide between planning and execution. Furthermore, the
three components of the system used different modeling
languages with different semantics, requiring consider-
able effort to ensure model synchronization.

IDEA (MDFf02; DLM03) is an agent architecture
designed to overcome shortcomings in the RA approach
to agent modeling. IDEA provides a simple virtual
machine that supports plan execution, consisting of a
model, plan database, plan runner, and reactive plan-
ner. The job of the reactive planner component of an
IDEA agent is to ensure that a “locally executable’’ plan
is returned. Thus, a crucial task is to define the scope
of the Reactive Planner’s job. The PIF is a natural way
to focus on those parts of the model that must be ad-
dressed by the Reactive Planner. IDEA also supports
many planners operating on the same plan database,
and thus the same model. PIFs are a natural way
to define the scope of these various planners in order
to ensure that planners do not step on each others’
toes. IDEA also supports multi-agent architectures us-
ing inter-agent communication. The original notion of
IDEA is to separate models for each agent; these mod-
els are intended to be written in the same language and
share components. Partial plans serve as the medium
by which planners communicate with the executive, as
well as the medium by which IDEA agents communi-
cate with each other. However, the PIF can (in prin-
ciple) be used to simply divide up the model amongst
the agents in a similar manner to the way it divides up
models amongst planners; the crucial problem to solve
is dividing plan databases efficiently among the IDEA
agents.

Conclusions and Future Work
We have described plan identification functions as a way
of circumscribing the planning problem that must be
soived in order to creace an executa& pian. FiFs na-;e
the advantage of enabling a single model to character-
ize both the planning problem and the plan execution
problem. They also enable easy characterization of the
boundary between planning and plan execution, even

in cases where different models for planning and execu-
tion are used. They also provide considerable flexibil-
ity, as they allow the boundary betFeen planning and
execution to be adjusted. We have described the im-
plementation of the PIF framework of EUROPA, and
shown how it can be used to implement many PIFs for
different type of plan execution systems.

We have implicitly assumed that a single model of
system behavior can be written, so that PIFs can be
used to separate the part of system behavior that per-
tains to the execution system. The IDEA project
(MDF+02) is pursuing this notion, but it remains to
be seen how the concepts extend to more sophisticated
planning and control architectures.

We have described one way of using PIFs to divide a
model amongst many planners. This approach does not
address important architectural issues of mutli-agent
access to a shared plan representation. It also doesn't
address the issue of how to structure the plan represen-
tations used by planners and executives. The efficient
implementation of PIFs may be impacted by this archi-
tecture.

Note that while the plan that is passed to the ex-
ecutive may define a set of plan completions, there is
no reason to assume that the executive chooses one of
these completions, and in fact no way to characterize
the actions of the executive in a declarative way.

PIFs can be used for more than just separating plan-
ning from the execution system. One can also imagine
partitioning the planning problem into many different
problems using a collection of PIF functions.

References
R. Bonasso, R. Firby, E. Gat, D. Kortenkamp,
D. Miller, and M. Slack. Experienences with an ar-
chitecture for intelligent, reactive agents. Journal of
Experimental and Theoretical Artificial Ingelligence,
9(2), 1997.
0. Despouys and F. Ingrand. Propice-plan: Towards a
unified framework for planning and execution. In Pro-
ceedings of the 5th European Conference on Planning,
1999.
M. Dias, S. Lemai, and N. Muscettola. A real-time
rover executive based on model-based reactive plan-
ning. In Proceedings of the International Conference
on Robotics and Automation, 2003.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence, 49:61-94, 1991.
J. Frank and A. J6nsson. Constraint based attribute
and interval planning. Journal of Constraints, To Ap-
pear, 2003.
A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. TO-
ward an application framework for automated plan-
ning and scheduling. In Proceedings of the 15th In-
ternational Joint Conference on Artificial Intelligence,
1997.

A. Jhsson, P. Morris, N. Muscettola, K. Rajm, and
B. Smith. Planning in interplanetary space: Theory
and practice. In Proceedings of the Fifih Interna-
tional Conference on Artificial Intelligence Planning
and Scheduling, 2000.
N. Muscettola, G. Dorais, C. Fry, R. Levinson, and
C. Plaunt. Idea: Planning at the core of autonomous
reactive agents. In Proceedings of the 3d International
NASA Workshop Planning and Scheduling for Space,
2002.
N. Muscettola and P. Morris. Execution of tempo-
ral plans with uncertainty. In Proceedings of the 1Ph
National Conference on Artificial Intelligence, 2001.
P. Morris, N. Muscettola, and I. Tsamardinos. Re-
formulating temporal plans for efficient execution. In
Proceedings of the 15th National Conference on Arti-
ficial Intelligence, 1998.
N. Muscettola, P. Morris, and T. Vidal. Dynamic con-
trol of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference on Artifi-
cial Intelligence, 2001.
N. Muscettola, P. Nayak, B. Pell, , and B. Williams.
Remote agent: To boldly go where no ai system has
gone before. Artificial Intelligence, 103(1-2), 1998.
D. Smith, J . Frank, and A. J/'onsson. Bridging the
gap between planning and scheduling. Knowledge En-
gineering Review, 15(1), 2000.
A. Tate, B. Drabble, and R. Kirby. 0-plan2: An open
architecture for command, planning and control. In-
telligent Scheduling, 1994.
D. E. Williins, K. L. Myers, J . D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and dy-
namic environments. Journal of Experimental and
Theoretical Artificial Ingelligence, 7(1), 1995.

